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ABSTRACT: Constructive Neural Network is a reliable, fast and efficient technique of constructing neural 
network for   solving difficult problems.  Cascade Correlation algorithm is a popular method of constructing 
artificial neural network. It learns very quickly. Recurrent Cascade Correlation algorithm is a recurrent type of 
CCRA. It learns fast and does not have to deal with continuous time steps. A constructive neural network 
Bipolar Sigmoid Algorithm is being proposed. It employs the bipolar sigmoid function as its activation 
function. The weight freezing and another measure correlation score is employed in this algorithm. It 
operates every time on only one layer of inputs as other weights are frozen. It is tested on twelve regression 
functions for mean square error obtained on testing data set and hidden nodes. It develops compact neural 
network as compared to CCRA and has better generalization characteristics where hidden nodes have less 
chances of saturation. 

Keywords: Constructive Neural Network, Cascade Correlation (CCRA), Recurrent Cascade Correlation, Bipolar 
sigmoid function. 

Abbreviations: CCRA, Cascade Correlation; RCCA, Recurrent Cascade Correlation Algorithm; BSA, Bipolar 
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I. INTRODUCTION 

Constructive Neural Network is a fast and very reliable 
technique of constructing a neural network.  It is very 
efficient in solving problems of optimization, regression, 
classification and pattern recognition with ability of 
enormous parallelism [1]. It is grown according to the 
problem in hand to appropriate size with no need of 
guessing the number of layers in advance using trial 
and error method [2].  A network of size appropriate to 
the particular problem is generated during finding the 
solution of the problem.  
Cascaded networks have higher advantage as the 
layers of hidden nodes responsible for processing are 
also easily adaptable to problem in hand.  These types 
of networks have advantage of solving certain difficult 
problems over other known feed forward layered   
neural networks [3]. These types of networks 
automatically specify the size and topology of the  
network being used. Cascade Correlation Algorithms 
advantage is that most of the network is frozen and only 
one layer is trained at any given time. It reduces the 
herd effect in which the candidate hidden nodes are 
allowed to reply to the error. Candidate nodes which are 
in pool can learn the error without any interaction 
between the other nodes. It has been a very successful 
algorithm. Small networks do not have severe overfitting 
problem. Progress of training can be taken into 
consideration as an extra factor for determining the 
stoppage condition [4]. 
In the earlier work on Cascade Correlation Algorithm it 
has been written that different non-linear activation 
functions can be used at hidden layer [5]. There can be 
sigmoid activation function, radial activation function, 

Gaussian activation functions and many more. It may 
result in more sophisticated and compact solutions to 
problems as compared to homogeneous network.  
Bipolar Sigmoid Algorithm (BSA) provides with the 
opportunity to use improved bipolar activation function 
for building a hierarchal cascaded network structure. 
Explanation is given in the following sections starting 
with some cascade algorithms followed by the new 
algorithm. 

II. CASCADED ALGORITHMS 

There are a number of Cascaded algorithms like 
Cascaded Correlation algorithm, Recurrent Cascaded 
Algorithm, Cascaded Error Projection, Casper algorithm 
and many more. Two of them are discussed below. 

A. Cascade Correlation Algorithm (CCRA) 
Cascade Correlation algorithm is a supervised type of 
learning algorithm used for developing artificial neural 
networks. This algorithm is very popular as it determines 
the network size and network topology on its own. There 
is no need to decide in advance the size, topology and 
depth of the network. It is very quick in learning. There 
is no back propogation through the network connections 
of the error signal. Even if the set used for training 
changes, its structures remains the same.  This 
algorithm was designed to overcome the problems and 
limitations of back propogation learning algorithm (step 
size problem and moving target problem). The network 
consists of only input units, connections and output units 
initially.  It allows only one hidden node to evolve while 
holding the neural network constant at any given time.   
There is no requirement of deciding the size of network, 

e
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depth of network and connectivity pattern in advance. 
Automatically a small neural network is built with a 
mixture of nonlinear activation functions like sigmoid, 
Gaussian, Radial and many more. It results in compact 
and elegant problem solutions with a mix of unit types 
that can adapted [6]. It learns very fast as each hidden 
unit gets a fixed problem and can decisively solve the 
problem. It builds deep neural networks which are 
feature detector of high order. In this new information is 
being added to network which has been already trained 
known as incremental learning. Only weights of one 
layer are trained at any given time, the rest network 
does not change and the results are cached. The results 
are not required to propagate backward the error signals 
and the connections send signal in one direction. There 
is no interaction between the candidate hidden units and 
gets the same input and error signal. It creates the 
hidden units dynamically. The units are stacked in 
multiple layers, at any given time only weights of one 
layer are trained and are trained using hill climbing. The 
units are freezed after being added to the network. This 
algorithm is called greedy algorithm as each hidden unit 
try to garb most of the error information.    

B. Recurrent Cascade Correlation Algorithm (RCCA) 
Recurrent Cascade Correlation is Cascade Correlation 
algorithms recurrent type. The hidden units are added 
the neural network with recurrent type connections one 
at any time. It learns from examples in order to map the 
inputs to the desired outputs.   There are connections 
between previous hidden units outputs and the hidden 
units in the layer. The output from new hidden unit is 
added back to the existing unit as new input. The 
network forms a recurrent loop [7]. The candidate unit 
with self recurrent weighted input is trained with other 
input weights in order to maximize the candidate 
correlation with residual error. It uses only self recurrent 
connections. The hidden unit will work as flip flop if 
recurrent connection is positive and will be in previous 
state until forced by other inputs to change. The hidden 
unit oscillates between negative and positive for each 
time step until held by other inputs in place if the 
recurrent connection is negative. The hidden unit will 
work like some kind of gate if the recurrent connection 
weight is zero. When new hidden node (candidate) is 
added to the network weight of the self recurrent unit is 
frozen. The other weights are also frozen along with the 
weight of new hidden node.  It learns fast, has good 
generalization ability, selects the network topology 
automatically, creates complex feature detector of high 
order and learns incrementally. It does not deal with 
continuous time steps [8]. 

III. DESIGN OF CONSTRUCTIVE BIPOLAR SIGMOID 
ALGORITHM (BSA) 

Constructive algorithm is based on cascade form of 
architecture. It is a supervised learning algorithm which 
builds a multilayer neural network. This constructive 
algorithm is based on bipolar sigmoid activation function 
which creates incremental cascaded neural network 
architecture. At each stage of network construction this 
algorithm uses bipolar sigmoid function. In this algorithm 
there is no need to decide the network size in advance 
and it builds automatically a network which is 
reasonably small. The algorithm begins with training the 

output node to approximate the target output. The 
network starts with some input nodes, no hidden nodes 
and some output nodes. The nodes in input layer and 
output layer are decided by the problem in hand. The 
input node is connected to output node with a 
connection weight that can be adjusted. The bias input 
node has a value of 1. The input connections and output 
connections are trained directly on the training set. 
quickprop algorithm is used for training the output 
weights. This algorithm acts as delta rule, for no hidden 
nodes. It converges very fast. The output nodes output 
is linear sum of weighted input and bias.  The hidden 
nodes are added to the network one at a time. The 
hidden node is connected to the input nodes and 
already existing hidden nodes. The input weights of the 
hidden node are frozen when it is added to the network 
and the output connections are repeatedly trained. Each 
new hidden node is added to a new layer in the network. 
After some training cycles there is no major reduction in 
the error. The network is run last time to calculate the 
error on the entire set of training. Training will be 
stopped if the network gives satisfactory results. If the 
result is not satisfactory training is done to reduce the 
residual error. This is done by addition of new hidden 
node, which is done by algorithm (unit creation).  The 
new hidden node is created using a candidate node 
which connected to the external inputs of the network 
and connections of already existing hidden nodes. It is 
not connected to the network active at present. The 
weights of candidate node are adjusted after each pass 
for a set number of passes of training set. A pool of 
candidate nodes is trained with each node having a 
different initial weight selected randomly. Each node is 
given same input and error signal. The candidate nodes 
have no interaction with each other and all of them are 
parallelly trained. The candidate node with best 
correlation score is installed when there is no progress 
further. It speeds up the process of training and there 
are fewer chances of not useful nodes being installed. 
When candidate node is trained there are no changes in 
weights of the network active at that time. Bipolar 
sigmoid activation function is used by hidden and 
candidate nodes. The hidden node works a feature 
detector and it is not altered once built. There are two 
phases of training namely training of weights of hidden 
nodes and output nodes [9]. 
Let us assume the training pattern is k, ���  is the 

observed output, ���  is the desired output, � ′   is the 
bipolar sigmoid activation functions derivative, ��� is the 
input node or hidden node, ���  is the weight of input 
node i to output node o, candidate node output is y,�	  is 
the average of candidate node output, residual error is 
e, 
̅ is the average of residual error, Corr is correlation,  
�� is the sign of the Corr, Δ� is the weight change, α is 
the learning rate and µ is the momentum factor. Input 
nodes are connected to output nodes with connections. 
There are no hidden nodes initially. This network is 
trained for minimization of the error using quickprop 
algorithm.  When output node weights are trained all the 
other weights are frozen. The output nodes are trained 
for minimization of sum squared error of the network. 
The performance of the network is evaluated once there 
is no improvement in the error level. 

�� = �
�

∑ ��                                                                                �,� (1) 
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Where � = (��� − ���)  is the difference between 
desired output and observed output. 
This sum squared error is minimized using gradient 
descent by calculation the error term. The gradient of 
SE vector is partial derivative of SE with respect to 
weights. By adjusting the weights the error can be 
rapidly reduced.  
���

����
= ∑ 
������                                                             (2)  


�� = �� ′                                                                                         (3) 
Improved bipolar sigmoid activation is used in this 
algorithm. This activation function has been designed 
for minimizing error by selecting a representation which 
maintains the weights of the network in the range of +1 
and -1.    

�( ) = �!"#$%

�&"#$%                                                                                 (4) 

This activation function is graphically represented as 
follows. 

 

Fig. 1. Bipolar Sigmoid Function. 

New hidden node is added to the network to reduce the 
error. It starts with a number of candidate nodes. Every 
candidate node is connected to all the external input 
connections of the network and to already existing 
hidden nodes. Its output is not connected to the network 
active at present. Candidate node output is not 
connected to the network active at present. A number of 
run on the training set examples are conducted in which 
the weights of the candidate node are adjusted after 
every pass. Every candidate node independently tries to 
maximize correlation using hill climbing. The main aim 
of these adjustments is to maximize the correlation of 
output of candidate node y and the error at outputs 
known as the residual error e.  

 

Fig. 2. Bipolar Sigmoid Neural Network. 

Candidate hidden nodes are trained to maximize the 
correlation between the candidate node output and 
residual error at the output of the network. Corr is 
calculated as 
'()) = ∑ |∑ (�� − �	)( 
�� − 
̅) � |�                                           (5) 
This Corr is computed for all the training pattern k. 

+� = ∑ ��(
�� − 
̅)� ′�                                                     (6) 

Gradient ascent is used for maximizing the Corr. 
,-�..

,��
= ∑ +�����                                                             (7) 

Every candidate node in the pool begins with a different 
pattern of initial weights. Each candidate node tries for 
maximization of its Corr value independently. Gradient 
descent or ascent is used to minimize sum squared 
error and maximize correlation with the above computed 
values. Weights are updated using �() + 1) = �()) +
1�()). 
α is the learning rate which controls the step size and µ 
is the momentum factor ranges between 0 and 1. 
Learning rate is used to avoid disruption in the direction 
of learning, when an unusual training pair is presented 
from the pattern. To increase the convergence rate a 
momentum factor can be added and to add momentum 
previous one or more training weights need to be saved.  
Momentum helps in large adjustment of weights and 
accelerates the convergence of the error propagation 
algorithm. The network proceeds in the direction of the 
previous and current(combined)gradient.  �() + 1) =
�()) + 2+���� + 31�() − 1) 
The stoppage criteria in based on the performance of 
the network during training. The training can be 
terminated if there is no decrease in training error after 
addition of a number of certain hidden nodes or the 
error is below a certain value. Another way of stopping 
training is terminate training after all the data used for 
training have been considered by the procedure and 
have been seen by the problem [10]. The other 
stoppage condition can be number of epochs, loss of 
generalization.  If the algorithm uses these conditions 
then the generalization performance of the network may 
be biased. These stoppage methods are simple and the 
error can observed directly while training. This algorithm 
is sensitive to stoppage conditions.  The parts of the 
network will not give good enough results, if training is 
for a short period and if training is for a long period, it 
will cost more computation cost and time, and can result 
in poor generalization and overfitting [11, 12].     
This algorithm requires less number of hidden layers in 
the network substantially by using improved bipolar 
sigmoid activation function. It does not affect the ability 
of network for generalization. This algorithm can work 
as an effective and simple method for developing 
modest depth network. In many important applications 
where time of forward propagation is important, depth of 
network needs to be minimized. In difficult problems of 
generalization the algorithm makes the convergence of 
network difficult and the hidden nodes may explode.  

IV. SIMULATIONS AND RESULTS 

In order to investigate the effects of Bipolar Sigmoid 
Algorithm, Twelve benchmark problems are selected. 
Cascade algorithm CCRA is compared with Bipolar 
Sigmoid Algorithm BSA. Methodology for comparing the 
performance generalization for the two functions is as 
follows. The data is partitioned into training set, 
validation set and testing set. For each of the activation 
functions twenty training runs are being performed with 
different starting random initial weight values. Training 
was done till ten hidden nodes. After installation of every 
hidden node the sum of squared error is measured for 
both the algorithms and score of hidden nodes is also 
reported in the tables of each regression function. In 
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each table the minimum, maximum, mean and standard 
deviation of mean square error on testing data set and 
hidden nodes is tabled. 
Let us consider one dimensional regression functions 
[13]. For each of the function 1500 uniformly distributed 
points at random were generated in one dimensional 
space.  
1. v = 1 + sin(u)                                                (8) 
where value of v lies between -2π and 2π 

Table 1:  Results of One dimensional regression 
function 1. 

 
Mean Square Error Hidden Units 

BSA CCRA BSA CCRA 

Minimum 0.20472 0.29186 1 1 

Maximum 0.30239 0.2935 10 10 

Mean 0.27347 0.2926 6.5 7.8 

Std.deviation 0.03284 0.00059 2.6352 2.9364 

From the table above it can be inferred that mean 
square error of BSA is less as compared to CCRA. Both 
BSA and CCRA have same number of minimum and 
maximum hidden units. 
2.  v = 3 sin u(u+1) + cos u

2
 +2                                  (9) 

 where u lies between –π and π.    

Table 2:  Results of One dimensional regression 
function 2. 

 
Mean Square Error Hidden Units 

BSA CCRA BSA CCRA 

Minimum 0.2053 0.29227 1 8 

Maximum 0.30844 0.29351 8 10 

Mean 0.27934 0.29271 4.9 9.1 

Std.deviation 0.030189 0.00045 2.4244 0.9944 

From the above table it can be noted that for the above 
one dimensional function the new algorithm BSA has 
less mean square error as compared to the original 
CCRA.  BSA requires less number of hidden units than 
CCRA. 
3. v = sin(u)/u                                                             (10) 
  where u lies between 0 and 2π. 

Table 3:  Results of One dimensional regression 
function 3. 

 
Mean Square Error Hidden Units 

BSA CCRA BSA CCRA 

Minimum 0.27743 0.29196 1 2 

Maximum 0.31081 0.2931 10 10 

Mean 0.2939 0.2926 6.4 7.9 

Std.deviation 0.01165 0.00037 3.2728 2.5582 

From the above table it can be seen that BSA performs 
better than CCRA and requires nearly same number of 
hidden units. 
Let us consider two dimensional regression functions for 
testing the algorithm [14-16]. For each problem two 
hundred twenty five random inputs which are uniformly 
distributed are generated in interval of 0 to 1 for training 
of network in two dimensional spaces. Uniformly 
sampled ten thousand points are used for testing the 
trained network generalization performance with 
maximum ten hidden nodes for maximum three hundred 
epochs. Five regression problems of varying complexity 
are described as follows. 
 

4. Radial Function 
v = 24.234 ((u1 – 0.5)

2
 + (u2 – 0.5)

2
) (0.75 – (u1 – 0.5)

2 

-(u2 – 0.5)
2
)                                                              (11) 

where u lies between 0 and 1. 

Table 4:  Results of Two dimensional regression 
function 4. 

 
Mean Square Error Hidden Units 

BSA CCRA BSA CCRA 

Minimum 0.26486 0.28221 2 8 

Maximum 0.31077 0.29298 10 10 

Mean 0.28709 0.28897 6.8 9.5 

Std.deviation 0.01509 0.00349 2.7809 0.8498 

From the above table it can be seen BSA has less mean 
square error as compared to CCRA. BSA  requires less 
number of  hidden nodes as compared to CCRA which 
needs 9.5  hidden nodes on an average. 
 5. Complicated Interaction Function  
v = 1.9 (1.35 +e

u1
 sin (13(u1 – 0.6)

2
) e

-u2
 sin (7u2))    (12) 

where u lies between 0 and 1. 

Table 5:  Results of Two dimensional regression 
function 5. 

 
Mean Square Error Hidden Units 

BSA CCRA BSA CCRA 

Minimum 0.27743 0.28282 1 2 

Maximum 0.31081 0.29351 8 10 

Mean 0.2939 0.28872 4.6 7.9 

Std.deviation 0.11647 0.00351 2.8363 2.5582 

From the above table it can be seen BSA is performing 
better than CCRA in terms of mean square error and 
requires slightly less hidden units than CCRA. 
6. Harmonic Function  
v = 42.659 (0.1 + (u1 – 0.5) (0.05 + (u1 – 0.5)

4
 -  

10(u1 – 0.5)
2
(u2 – 0.5)

2 
+ 5(u2 – 0.5)

4
))                       (13) 

where u1 and u2 lies between -0.5 and 0.5 

Table 6:  Results of Two dimensional regression 
function 6. 

 
Mean Square Error Hidden Units 

BSA CCRA BSA CCRA 

Minimum 0.26486 0.29186 1 8 

Maximum 0.31077 0.2935 10 10 

Mean 0.28709 0.2926 6.5 9.5 

Std.deviation 0.01509 0.00059 2.6352 0.8498 

From the above table it can be seen that BSA performs 
better than CCRA and needs less hidden units as 
compared to CCRA. 
7. Additive Function  
v = 1.3356 [1.5 (1 - u1) + e

(2u
1

-1) 
sin (3π (u1 - 0.6)

2
) + 

e 
(3(u

2
-0.5)) 

sin (4π (u2 - 0.9)
2
) ]                                     (14) 

where u1 and u2 lies between 0 and 1. 

Table 7: Results of Two dimensional regression 
function 7. 

 Mean Square Error Hidden Units 
BSA CCRA BSA CCRA 

Minimum 0.2053 0.29186 1 5 

Maximum 0.30844 0.2935 10 10 
Mean 0.27974 0.2926 6.5 8.8 
Std.deviation 0.03036 0.00059 2.6352 1.6193 
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From the above table it can be seen that mean square 
error of BSA is less than CCRA and BSA requires  four 
less hidden units than CCRA. 
8. Simple Interaction Function 
  v = 10.391((u1 – 0.4) (u2 – 0.6) + 0.36)                  (15) 
where u1 and u2 lies between 0 and 1. 

Table 8: Results of Two dimensional regression 
function 8. 

 
Mean Square Error Hidden Units 

BSA CCRA BSA CCRA 

Minimum 0.25249 0.29206 1 4 

Maximum 0.30266 0.29348 10 10 

Mean 0.28584 0.29282 6 8.5 

Std.deviation 0.01444 0.00043 2.9814 2.3214 

From the above table it can be seen that BSA performs 
better than CCRA in terms of mean square error. Also, 
requires six hidden units on average as compared to 8.5 
on average for CCRA. 
Let us consider three dimensional regression function 
[17, 18]. Random 1000 input samples are used for 
training the network and 500 samples are used for 
verification of performance of network in terms of 
generalization. 
9.  Simple Analytical Function (SAF)  

v = �

�&"#5678(6$#9.;)$8< =>?(@6<)                                          (16) 

Table 9: Results of Three dimensional regression 
function 9. 

 Mean Square Error Hidden Units 

BSA CCRA BSA CCRA 

Minimum 0.22307 0.29172 1 6 

Maximum 0.31086 0.29378 9 10 

Mean 0.27922 0.2957 5.1 8.3 

Std.deviation 0.0328 0.00069 3.0714 1.6364 

From the table above the training error in BSA becomes 
much less than CCRA and performance in terms of 
generalization is improved greatly. BSA requires 5.1 
hidden units on average as compared to CCRA which 
requires 8.3 hidden units on an average.  

10. v=4(u1 – 0.5)( u2 - 0.5)sin(2BCu�
� + uE

�))               (17) 
 where u1, u2 and u3 lies between -1 and 1. 

Table 10: Results of Three dimensional regression 
function 10. 

 
Mean Square Error Hidden Units 

BSA CCRA BSA CCRA 

Minimum 0.24214 0.29199 1 7 

Maximum 0.31106 0.29323 10 10 

Mean 0.28073 0.29271 4.8 9 

Std.deviation 0.01829 0.00041 2.6998 1.4142 

From the above table it can be seen that BSA performs 
better than CCRA. BSA requires 4.8 hidden units on an 
average and CCRA requires 9 hidden units on an 
average. 
Let us consider four dimensional regression functions. 
Uniformly distributed 2000 random input samples are 
generated in the defined domain of four dimensional 
space. The samples are used as 500 for training, 500 
for verification and 1000 for testing. Ten hidden nodes 
are added at the maximum.   

11. v = sin(
( )( )

41
sin2 uu

e
π ( )( )

32
sin2 uu

e
π

)                        (18) 
where u1, u2 , u3 and u4 lies between -1 and 1. 

Table 11: Result of Four dimensional regression 
function 11. 

 Mean Square Error Hidden Units 
BSA CCRA BSA CCRA 

Minimum 0.28259 0.29223 1 2 

Maximum 0.3124 0.29368 6 10 
Mean 0.2943 0.2929 3 7.2 
Std.deviation 0.1134 0.00046 1.3333 2.8597 
 
From the above table it can be seen that BSA performs 
slightly better than CCRA and needs less hidden units 
as compared to CCRA. 
12. v =  e

(2u1 sin(πu4))
 + sin(u2u3)                                   (19) 

where u1, u2 , u3 and u4 lies between -0.25 and 0.25.  

Table 12: Results of Four dimensional regression 
function 12. 

 Mean Square Error Hidden Units 
BSA CCRA BSA CCRA 

Minimum 0.26056 0.29205 1 6 
Maximum 0.29678 0.29336 9 10 
Mean 0.28248 0.29261 5.3 8.8 
Std.deviation 0.01407 0.0005 2.5841 1.7512 

From the above table it can be seen that BSA performs 
slightly better than CCRA and requires less number of 
hidden units. 
So, the results of the comparison of BSA and CCRA 
highlight that weight freezing technique used and 
activation function used for building the network has 
ability to solve many complex problems. The cascaded 
hidden nodes become feature detectors of higher order. 
The BSA performs better on regression dataset and 
produces good solution of problem on the dataset. The 
BSA requires less number of hidden units as compared 
to CCRA and reduces the depth of the network. The 
BSA continues to maintain good mean square error 
during training of the network. Overall the new algorithm 
converges better. The period increases immensely over 
which the neural network is being trained as the size of 
network is growing. 

V. CONCLUSION 

Neural networks must address the problems like 
performance of the network while training on new data 
set or new training pattern in terms of generalization 
performance, training patterns rate of recognition. 
Solutions of these problems influences the neural 
network overall performance significantly. The proposed 
algorithm BSA prevents overtraining of the network and 
gives improved performance in terms of generalization 
capabilities. BSA produces compact neural networks as 
compared to CCRA. This algorithm reduces the number 
of hidden layers in the network substantially by using 
improved bipolar sigmoid activation function. The depth 
of the network is reduced by 2-6 layers. The BSA 
reduces the depth more than CCRA.  The algorithm is 
able to cache its calculation due to its weight freezing 
technique and there is no error backpropogation.  The 
algorithm is very efficient due to freezing as it caches 
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the values and no recalculation is done.  It also removes 
the saturation problem and avoids installation of nodes 
performing poorly due to weight freezing 

VI. FUTURE SCOPE 

This algorithm BSA can be improved using different 
activation functions. 
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