
Kaur & Gupta International Journal on Emerging Technologies 11(2): 991-996(2020) 991

International Journal on Emerging Technologies 11(2): 991-996(2020)

ISSN No. (Print): 0975-8364

ISSN No. (Online): 2249-3255

Bipolar Sigmoid Algorithm for Designing Constructive Neural Network

Jaswinder Kaur
1
and Neha Gupta

2

1
 Ph.D. Scholar, Department of School of Engineering & Technology

Ansal University, Gurgaon, India.
2
Assistant Professor, Department of School of Engineering & Technology

Ansal University, Gurgaon, India.

(Corresponding author: Jaswinder Kaur)
(Received 16 January 2020, Revised 14 March 2020, Accepted 16 March 2020)

(Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: Constructive Neural Network is a reliable, fast and efficient technique of constructing neural
network for solving difficult problems. Cascade Correlation algorithm is a popular method of constructing
artificial neural network. It learns very quickly. Recurrent Cascade Correlation algorithm is a recurrent type of
CCRA. It learns fast and does not have to deal with continuous time steps. A constructive neural network
Bipolar Sigmoid Algorithm is being proposed. It employs the bipolar sigmoid function as its activation
function. The weight freezing and another measure correlation score is employed in this algorithm. It
operates every time on only one layer of inputs as other weights are frozen. It is tested on twelve regression
functions for mean square error obtained on testing data set and hidden nodes. It develops compact neural
network as compared to CCRA and has better generalization characteristics where hidden nodes have less
chances of saturation.

Keywords: Constructive Neural Network, Cascade Correlation (CCRA), Recurrent Cascade Correlation, Bipolar
sigmoid function.

Abbreviations: CCRA, Cascade Correlation; RCCA, Recurrent Cascade Correlation Algorithm; BSA, Bipolar
Sigmoid Algorithm.

I. INTRODUCTION

Constructive Neural Network is a fast and very reliable
technique of constructing a neural network. It is very
efficient in solving problems of optimization, regression,
classification and pattern recognition with ability of
enormous parallelism [1]. It is grown according to the
problem in hand to appropriate size with no need of
guessing the number of layers in advance using trial
and error method [2]. A network of size appropriate to
the particular problem is generated during finding the
solution of the problem.
Cascaded networks have higher advantage as the
layers of hidden nodes responsible for processing are
also easily adaptable to problem in hand. These types
of networks have advantage of solving certain difficult
problems over other known feed forward layered
neural networks [3]. These types of networks
automatically specify the size and topology of the
network being used. Cascade Correlation Algorithms
advantage is that most of the network is frozen and only
one layer is trained at any given time. It reduces the
herd effect in which the candidate hidden nodes are
allowed to reply to the error. Candidate nodes which are
in pool can learn the error without any interaction
between the other nodes. It has been a very successful
algorithm. Small networks do not have severe overfitting
problem. Progress of training can be taken into
consideration as an extra factor for determining the
stoppage condition [4].
In the earlier work on Cascade Correlation Algorithm it
has been written that different non-linear activation
functions can be used at hidden layer [5]. There can be
sigmoid activation function, radial activation function,

Gaussian activation functions and many more. It may
result in more sophisticated and compact solutions to
problems as compared to homogeneous network.
Bipolar Sigmoid Algorithm (BSA) provides with the
opportunity to use improved bipolar activation function
for building a hierarchal cascaded network structure.
Explanation is given in the following sections starting
with some cascade algorithms followed by the new
algorithm.

II. CASCADED ALGORITHMS

There are a number of Cascaded algorithms like
Cascaded Correlation algorithm, Recurrent Cascaded
Algorithm, Cascaded Error Projection, Casper algorithm
and many more. Two of them are discussed below.

A. Cascade Correlation Algorithm (CCRA)
Cascade Correlation algorithm is a supervised type of
learning algorithm used for developing artificial neural
networks. This algorithm is very popular as it determines
the network size and network topology on its own. There
is no need to decide in advance the size, topology and
depth of the network. It is very quick in learning. There
is no back propogation through the network connections
of the error signal. Even if the set used for training
changes, its structures remains the same. This
algorithm was designed to overcome the problems and
limitations of back propogation learning algorithm (step
size problem and moving target problem). The network
consists of only input units, connections and output units
initially. It allows only one hidden node to evolve while
holding the neural network constant at any given time.
There is no requirement of deciding the size of network,

e
t

Kaur & Gupta International Journal on Emerging Technologies 11(2): 991-996(2020) 992

depth of network and connectivity pattern in advance.
Automatically a small neural network is built with a
mixture of nonlinear activation functions like sigmoid,
Gaussian, Radial and many more. It results in compact
and elegant problem solutions with a mix of unit types
that can adapted [6]. It learns very fast as each hidden
unit gets a fixed problem and can decisively solve the
problem. It builds deep neural networks which are
feature detector of high order. In this new information is
being added to network which has been already trained
known as incremental learning. Only weights of one
layer are trained at any given time, the rest network
does not change and the results are cached. The results
are not required to propagate backward the error signals
and the connections send signal in one direction. There
is no interaction between the candidate hidden units and
gets the same input and error signal. It creates the
hidden units dynamically. The units are stacked in
multiple layers, at any given time only weights of one
layer are trained and are trained using hill climbing. The
units are freezed after being added to the network. This
algorithm is called greedy algorithm as each hidden unit
try to garb most of the error information.

B. Recurrent Cascade Correlation Algorithm (RCCA)
Recurrent Cascade Correlation is Cascade Correlation
algorithms recurrent type. The hidden units are added
the neural network with recurrent type connections one
at any time. It learns from examples in order to map the
inputs to the desired outputs. There are connections
between previous hidden units outputs and the hidden
units in the layer. The output from new hidden unit is
added back to the existing unit as new input. The
network forms a recurrent loop [7]. The candidate unit
with self recurrent weighted input is trained with other
input weights in order to maximize the candidate
correlation with residual error. It uses only self recurrent
connections. The hidden unit will work as flip flop if
recurrent connection is positive and will be in previous
state until forced by other inputs to change. The hidden
unit oscillates between negative and positive for each
time step until held by other inputs in place if the
recurrent connection is negative. The hidden unit will
work like some kind of gate if the recurrent connection
weight is zero. When new hidden node (candidate) is
added to the network weight of the self recurrent unit is
frozen. The other weights are also frozen along with the
weight of new hidden node. It learns fast, has good
generalization ability, selects the network topology
automatically, creates complex feature detector of high
order and learns incrementally. It does not deal with
continuous time steps [8].

III. DESIGN OF CONSTRUCTIVE BIPOLAR SIGMOID
ALGORITHM (BSA)

Constructive algorithm is based on cascade form of
architecture. It is a supervised learning algorithm which
builds a multilayer neural network. This constructive
algorithm is based on bipolar sigmoid activation function
which creates incremental cascaded neural network
architecture. At each stage of network construction this
algorithm uses bipolar sigmoid function. In this algorithm
there is no need to decide the network size in advance
and it builds automatically a network which is
reasonably small. The algorithm begins with training the

output node to approximate the target output. The
network starts with some input nodes, no hidden nodes
and some output nodes. The nodes in input layer and
output layer are decided by the problem in hand. The
input node is connected to output node with a
connection weight that can be adjusted. The bias input
node has a value of 1. The input connections and output
connections are trained directly on the training set.
quickprop algorithm is used for training the output
weights. This algorithm acts as delta rule, for no hidden
nodes. It converges very fast. The output nodes output
is linear sum of weighted input and bias. The hidden
nodes are added to the network one at a time. The
hidden node is connected to the input nodes and
already existing hidden nodes. The input weights of the
hidden node are frozen when it is added to the network
and the output connections are repeatedly trained. Each
new hidden node is added to a new layer in the network.
After some training cycles there is no major reduction in
the error. The network is run last time to calculate the
error on the entire set of training. Training will be
stopped if the network gives satisfactory results. If the
result is not satisfactory training is done to reduce the
residual error. This is done by addition of new hidden
node, which is done by algorithm (unit creation). The
new hidden node is created using a candidate node
which connected to the external inputs of the network
and connections of already existing hidden nodes. It is
not connected to the network active at present. The
weights of candidate node are adjusted after each pass
for a set number of passes of training set. A pool of
candidate nodes is trained with each node having a
different initial weight selected randomly. Each node is
given same input and error signal. The candidate nodes
have no interaction with each other and all of them are
parallelly trained. The candidate node with best
correlation score is installed when there is no progress
further. It speeds up the process of training and there
are fewer chances of not useful nodes being installed.
When candidate node is trained there are no changes in
weights of the network active at that time. Bipolar
sigmoid activation function is used by hidden and
candidate nodes. The hidden node works a feature
detector and it is not altered once built. There are two
phases of training namely training of weights of hidden
nodes and output nodes [9].
Let us assume the training pattern is k, ��� is the

observed output, ��� is the desired output, � ′ is the
bipolar sigmoid activation functions derivative, ��� is the
input node or hidden node, ��� is the weight of input
node i to output node o, candidate node output is y,�	 is
the average of candidate node output, residual error is
e,
̅ is the average of residual error, Corr is correlation,
�� is the sign of the Corr, Δ� is the weight change, α is
the learning rate and µ is the momentum factor. Input
nodes are connected to output nodes with connections.
There are no hidden nodes initially. This network is
trained for minimization of the error using quickprop
algorithm. When output node weights are trained all the
other weights are frozen. The output nodes are trained
for minimization of sum squared error of the network.
The performance of the network is evaluated once there
is no improvement in the error level.

�� = �
�

∑ �� �,� (1)

Kaur & Gupta International Journal on Emerging Technologies 11(2): 991-996(2020) 993

Where � = (��� − ���) is the difference between
desired output and observed output.
This sum squared error is minimized using gradient
descent by calculation the error term. The gradient of
SE vector is partial derivative of SE with respect to
weights. By adjusting the weights the error can be
rapidly reduced.
���

����
= ∑
������ (2)

�� = �� ′ (3)
Improved bipolar sigmoid activation is used in this
algorithm. This activation function has been designed
for minimizing error by selecting a representation which
maintains the weights of the network in the range of +1
and -1.

�() = �!"#$%

�&"#$% (4)

This activation function is graphically represented as
follows.

Fig. 1. Bipolar Sigmoid Function.

New hidden node is added to the network to reduce the
error. It starts with a number of candidate nodes. Every
candidate node is connected to all the external input
connections of the network and to already existing
hidden nodes. Its output is not connected to the network
active at present. Candidate node output is not
connected to the network active at present. A number of
run on the training set examples are conducted in which
the weights of the candidate node are adjusted after
every pass. Every candidate node independently tries to
maximize correlation using hill climbing. The main aim
of these adjustments is to maximize the correlation of
output of candidate node y and the error at outputs
known as the residual error e.

Fig. 2. Bipolar Sigmoid Neural Network.

Candidate hidden nodes are trained to maximize the
correlation between the candidate node output and
residual error at the output of the network. Corr is
calculated as
'()) = ∑ |∑ (�� − �)(
�� −
̅) � |� (5)
This Corr is computed for all the training pattern k.

+� = ∑ ��(
�� −
̅)� ′� (6)

Gradient ascent is used for maximizing the Corr.
,-�..

,��
= ∑ +����� (7)

Every candidate node in the pool begins with a different
pattern of initial weights. Each candidate node tries for
maximization of its Corr value independently. Gradient
descent or ascent is used to minimize sum squared
error and maximize correlation with the above computed
values. Weights are updated using �() + 1) = �()) +
1�()).
α is the learning rate which controls the step size and µ
is the momentum factor ranges between 0 and 1.
Learning rate is used to avoid disruption in the direction
of learning, when an unusual training pair is presented
from the pattern. To increase the convergence rate a
momentum factor can be added and to add momentum
previous one or more training weights need to be saved.
Momentum helps in large adjustment of weights and
accelerates the convergence of the error propagation
algorithm. The network proceeds in the direction of the
previous and current(combined)gradient. �() + 1) =
�()) + 2+���� + 31�() − 1)
The stoppage criteria in based on the performance of
the network during training. The training can be
terminated if there is no decrease in training error after
addition of a number of certain hidden nodes or the
error is below a certain value. Another way of stopping
training is terminate training after all the data used for
training have been considered by the procedure and
have been seen by the problem [10]. The other
stoppage condition can be number of epochs, loss of
generalization. If the algorithm uses these conditions
then the generalization performance of the network may
be biased. These stoppage methods are simple and the
error can observed directly while training. This algorithm
is sensitive to stoppage conditions. The parts of the
network will not give good enough results, if training is
for a short period and if training is for a long period, it
will cost more computation cost and time, and can result
in poor generalization and overfitting [11, 12].
This algorithm requires less number of hidden layers in
the network substantially by using improved bipolar
sigmoid activation function. It does not affect the ability
of network for generalization. This algorithm can work
as an effective and simple method for developing
modest depth network. In many important applications
where time of forward propagation is important, depth of
network needs to be minimized. In difficult problems of
generalization the algorithm makes the convergence of
network difficult and the hidden nodes may explode.

IV. SIMULATIONS AND RESULTS

In order to investigate the effects of Bipolar Sigmoid
Algorithm, Twelve benchmark problems are selected.
Cascade algorithm CCRA is compared with Bipolar
Sigmoid Algorithm BSA. Methodology for comparing the
performance generalization for the two functions is as
follows. The data is partitioned into training set,
validation set and testing set. For each of the activation
functions twenty training runs are being performed with
different starting random initial weight values. Training
was done till ten hidden nodes. After installation of every
hidden node the sum of squared error is measured for
both the algorithms and score of hidden nodes is also
reported in the tables of each regression function. In

Kaur & Gupta International Journal on Emerging Technologies 11(2): 991-996(2020) 994

each table the minimum, maximum, mean and standard
deviation of mean square error on testing data set and
hidden nodes is tabled.
Let us consider one dimensional regression functions
[13]. For each of the function 1500 uniformly distributed
points at random were generated in one dimensional
space.
1. v = 1 + sin(u) (8)
where value of v lies between -2π and 2π

Table 1: Results of One dimensional regression
function 1.

Mean Square Error Hidden Units

BSA CCRA BSA CCRA

Minimum 0.20472 0.29186 1 1

Maximum 0.30239 0.2935 10 10

Mean 0.27347 0.2926 6.5 7.8

Std.deviation 0.03284 0.00059 2.6352 2.9364

From the table above it can be inferred that mean
square error of BSA is less as compared to CCRA. Both
BSA and CCRA have same number of minimum and
maximum hidden units.
2. v = 3 sin u(u+1) + cos u

2
 +2 (9)

 where u lies between –π and π.

Table 2: Results of One dimensional regression
function 2.

Mean Square Error Hidden Units

BSA CCRA BSA CCRA

Minimum 0.2053 0.29227 1 8

Maximum 0.30844 0.29351 8 10

Mean 0.27934 0.29271 4.9 9.1

Std.deviation 0.030189 0.00045 2.4244 0.9944

From the above table it can be noted that for the above
one dimensional function the new algorithm BSA has
less mean square error as compared to the original
CCRA. BSA requires less number of hidden units than
CCRA.
3. v = sin(u)/u (10)
 where u lies between 0 and 2π.

Table 3: Results of One dimensional regression
function 3.

Mean Square Error Hidden Units

BSA CCRA BSA CCRA

Minimum 0.27743 0.29196 1 2

Maximum 0.31081 0.2931 10 10

Mean 0.2939 0.2926 6.4 7.9

Std.deviation 0.01165 0.00037 3.2728 2.5582

From the above table it can be seen that BSA performs
better than CCRA and requires nearly same number of
hidden units.
Let us consider two dimensional regression functions for
testing the algorithm [14-16]. For each problem two
hundred twenty five random inputs which are uniformly
distributed are generated in interval of 0 to 1 for training
of network in two dimensional spaces. Uniformly
sampled ten thousand points are used for testing the
trained network generalization performance with
maximum ten hidden nodes for maximum three hundred
epochs. Five regression problems of varying complexity
are described as follows.

4. Radial Function
v = 24.234 ((u1 – 0.5)

2
 + (u2 – 0.5)

2
) (0.75 – (u1 – 0.5)

2

-(u2 – 0.5)
2
) (11)

where u lies between 0 and 1.

Table 4: Results of Two dimensional regression
function 4.

Mean Square Error Hidden Units

BSA CCRA BSA CCRA

Minimum 0.26486 0.28221 2 8

Maximum 0.31077 0.29298 10 10

Mean 0.28709 0.28897 6.8 9.5

Std.deviation 0.01509 0.00349 2.7809 0.8498

From the above table it can be seen BSA has less mean
square error as compared to CCRA. BSA requires less
number of hidden nodes as compared to CCRA which
needs 9.5 hidden nodes on an average.
 5. Complicated Interaction Function
v = 1.9 (1.35 +e

u1
 sin (13(u1 – 0.6)

2
) e

-u2
 sin (7u2)) (12)

where u lies between 0 and 1.

Table 5: Results of Two dimensional regression
function 5.

Mean Square Error Hidden Units

BSA CCRA BSA CCRA

Minimum 0.27743 0.28282 1 2

Maximum 0.31081 0.29351 8 10

Mean 0.2939 0.28872 4.6 7.9

Std.deviation 0.11647 0.00351 2.8363 2.5582

From the above table it can be seen BSA is performing
better than CCRA in terms of mean square error and
requires slightly less hidden units than CCRA.
6. Harmonic Function
v = 42.659 (0.1 + (u1 – 0.5) (0.05 + (u1 – 0.5)

4
 -

10(u1 – 0.5)
2
(u2 – 0.5)

2
+ 5(u2 – 0.5)

4
)) (13)

where u1 and u2 lies between -0.5 and 0.5

Table 6: Results of Two dimensional regression
function 6.

Mean Square Error Hidden Units

BSA CCRA BSA CCRA

Minimum 0.26486 0.29186 1 8

Maximum 0.31077 0.2935 10 10

Mean 0.28709 0.2926 6.5 9.5

Std.deviation 0.01509 0.00059 2.6352 0.8498

From the above table it can be seen that BSA performs
better than CCRA and needs less hidden units as
compared to CCRA.
7. Additive Function
v = 1.3356 [1.5 (1 - u1) + e

(2u
1

-1)
sin (3π (u1 - 0.6)

2
) +

e
(3(u

2
-0.5))

sin (4π (u2 - 0.9)
2
)] (14)

where u1 and u2 lies between 0 and 1.

Table 7: Results of Two dimensional regression
function 7.

 Mean Square Error Hidden Units
BSA CCRA BSA CCRA

Minimum 0.2053 0.29186 1 5

Maximum 0.30844 0.2935 10 10
Mean 0.27974 0.2926 6.5 8.8
Std.deviation 0.03036 0.00059 2.6352 1.6193

Kaur & Gupta International Journal on Emerging Technologies 11(2): 991-996(2020) 995

From the above table it can be seen that mean square
error of BSA is less than CCRA and BSA requires four
less hidden units than CCRA.
8. Simple Interaction Function
 v = 10.391((u1 – 0.4) (u2 – 0.6) + 0.36) (15)
where u1 and u2 lies between 0 and 1.

Table 8: Results of Two dimensional regression
function 8.

Mean Square Error Hidden Units

BSA CCRA BSA CCRA

Minimum 0.25249 0.29206 1 4

Maximum 0.30266 0.29348 10 10

Mean 0.28584 0.29282 6 8.5

Std.deviation 0.01444 0.00043 2.9814 2.3214

From the above table it can be seen that BSA performs
better than CCRA in terms of mean square error. Also,
requires six hidden units on average as compared to 8.5
on average for CCRA.
Let us consider three dimensional regression function
[17, 18]. Random 1000 input samples are used for
training the network and 500 samples are used for
verification of performance of network in terms of
generalization.
9. Simple Analytical Function (SAF)

v = �

�&"#5678(6$#9.;)$8< =>?(@6<) (16)

Table 9: Results of Three dimensional regression
function 9.

 Mean Square Error Hidden Units

BSA CCRA BSA CCRA

Minimum 0.22307 0.29172 1 6

Maximum 0.31086 0.29378 9 10

Mean 0.27922 0.2957 5.1 8.3

Std.deviation 0.0328 0.00069 3.0714 1.6364

From the table above the training error in BSA becomes
much less than CCRA and performance in terms of
generalization is improved greatly. BSA requires 5.1
hidden units on average as compared to CCRA which
requires 8.3 hidden units on an average.

10. v=4(u1 – 0.5)(u2 - 0.5)sin(2BCu�
� + uE

�)) (17)
 where u1, u2 and u3 lies between -1 and 1.

Table 10: Results of Three dimensional regression
function 10.

Mean Square Error Hidden Units

BSA CCRA BSA CCRA

Minimum 0.24214 0.29199 1 7

Maximum 0.31106 0.29323 10 10

Mean 0.28073 0.29271 4.8 9

Std.deviation 0.01829 0.00041 2.6998 1.4142

From the above table it can be seen that BSA performs
better than CCRA. BSA requires 4.8 hidden units on an
average and CCRA requires 9 hidden units on an
average.
Let us consider four dimensional regression functions.
Uniformly distributed 2000 random input samples are
generated in the defined domain of four dimensional
space. The samples are used as 500 for training, 500
for verification and 1000 for testing. Ten hidden nodes
are added at the maximum.

11. v = sin(
()()

41
sin2 uu

e
π ()()

32
sin2 uu

e
π

) (18)
where u1, u2 , u3 and u4 lies between -1 and 1.

Table 11: Result of Four dimensional regression
function 11.

 Mean Square Error Hidden Units
BSA CCRA BSA CCRA

Minimum 0.28259 0.29223 1 2

Maximum 0.3124 0.29368 6 10
Mean 0.2943 0.2929 3 7.2
Std.deviation 0.1134 0.00046 1.3333 2.8597

From the above table it can be seen that BSA performs
slightly better than CCRA and needs less hidden units
as compared to CCRA.
12. v = e

(2u1 sin(πu4))
 + sin(u2u3) (19)

where u1, u2 , u3 and u4 lies between -0.25 and 0.25.

Table 12: Results of Four dimensional regression
function 12.

 Mean Square Error Hidden Units
BSA CCRA BSA CCRA

Minimum 0.26056 0.29205 1 6
Maximum 0.29678 0.29336 9 10
Mean 0.28248 0.29261 5.3 8.8
Std.deviation 0.01407 0.0005 2.5841 1.7512

From the above table it can be seen that BSA performs
slightly better than CCRA and requires less number of
hidden units.
So, the results of the comparison of BSA and CCRA
highlight that weight freezing technique used and
activation function used for building the network has
ability to solve many complex problems. The cascaded
hidden nodes become feature detectors of higher order.
The BSA performs better on regression dataset and
produces good solution of problem on the dataset. The
BSA requires less number of hidden units as compared
to CCRA and reduces the depth of the network. The
BSA continues to maintain good mean square error
during training of the network. Overall the new algorithm
converges better. The period increases immensely over
which the neural network is being trained as the size of
network is growing.

V. CONCLUSION

Neural networks must address the problems like
performance of the network while training on new data
set or new training pattern in terms of generalization
performance, training patterns rate of recognition.
Solutions of these problems influences the neural
network overall performance significantly. The proposed
algorithm BSA prevents overtraining of the network and
gives improved performance in terms of generalization
capabilities. BSA produces compact neural networks as
compared to CCRA. This algorithm reduces the number
of hidden layers in the network substantially by using
improved bipolar sigmoid activation function. The depth
of the network is reduced by 2-6 layers. The BSA
reduces the depth more than CCRA. The algorithm is
able to cache its calculation due to its weight freezing
technique and there is no error backpropogation. The
algorithm is very efficient due to freezing as it caches

Kaur & Gupta International Journal on Emerging Technologies 11(2): 991-996(2020) 996

the values and no recalculation is done. It also removes
the saturation problem and avoids installation of nodes
performing poorly due to weight freezing

VI. FUTURE SCOPE

This algorithm BSA can be improved using different
activation functions.

REFERENCES

[1]. Lachhwani, K. (2020). Application of neural network
models for mathematical programming problems: a
state of art review. Archives of Computational Methods
in Engineering, 27(1), 171-182.
[2]. Zemouri, R., Omri, N., F naiech, F., Zerhouni, N., &
Fnaiech, N. (2019). A new growing pruning deep
learning neural network algorithm (GP-DLNN). Neural
Computing and Applications, 1-17.
[3]. Lee, S. W., & Kim, S. Y. (1999). Integrated
segmentation and recognition of handwritten numerals
with cascade neural network. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 29(2), 285-290.
[4]. Treadgold, N. K., & Gedeon, T. D. (1997, June). A
cascade network algorithm employing progressive
RPROP. In International Work-Conference on Artificial
Neural Networks (pp. 733-742). Springer, Berlin,
Heidelberg.
[5]. Fahlman, S. E., & Lebiere, C. (1990). The cascade-
correlation learning architecture. In Advances in neural
information processing systems (pp. 524-532).
[6]. Hoehfeld, M., & Fahlman, S. E. (1991). Learning
with limited numerical precision using the cascade-
correlation algorithm (pp. 602-611). Carnegie-Mellon
University. Department of Computer Science.
[7]. Hang, R., Liu, Q., Hong, D., & Ghamisi, P. (2019).
Cascaded recurrent neural networks for hyperspectral
image classification. IEEE Transactions on Geoscience
and Remote Sensing, 57(8), 5384-5394.
[8]. Fahlman, S. E. (1991). The recurrent cascade-
correlation architecture. In Advances in neural
information processing systems (pp. 190-196).

[9]. Sibi, P., Jones, S. A., & Siddarth, P. (2013). Analysis
of different activation functions using back propagation
neural networks. Journal of Theoretical and Applied
Information Technology, 47(3), 1264-1268.
[10]. Castellano, G., & Fanelli, A. M. (2000). Variable
selection using neural-network models.
Neurocomputing, 31(1-4), 1-13.
[11]. Green II, R. C., Wang, L., & Alam, M. (2012).
Training neural networks using central force
optimization and particle swarm optimization: insights
and comparisons. Expert Systems with Applications,
39(1), 555-563.
[12]. Lawrence, S., Giles, C. L., & Tsoi, A. C. (1998).
What size neural network gives optimal generalization?
Convergence properties of backpropagation.
[13]. Rosen, B. E. (1996). Ensemble learning using
decorrelated neural networks. Connection science, 8(3-
4), 373-384.
[14]. Ma, L., & Khorasani, K. (2004). New training
strategies for constructive neural networks with
application to regression problems. Neural networks,
17(4), 589-609.
[15]. Kwok, T. Y., & Yeung, D. Y. (1997). Objective
functions for training new hidden units in constructive
neural networks. IEEE Transactions on neural networks,
8(5), 1131-1148.
[16]. Treadgold, N. K., & Gedeon, T. D. (1997, June). A
cascade network algorithm employing progressive
RPROP. In International Work-Conference on Artificial
Neural Networks (pp. 733-742). Springer, Berlin,
Heidelberg.
[17]. Ma, L., & Khorasani, K. (2005). Constructive
feedforward neural networks using Hermite polynomial
activation functions. IEEE Transactions on Neural
Networks, 16(4), 821-833.
[18]. Ma, L., & Khorasani, K. (2003). A new strategy for
adaptively constructing multilayer feedforward neural
networks. Neurocomputing, 51, 361-385.

How to cite this article: Kaur, J.

and Gupta, N. (2020). Bipolar Sigmoid Algorithm for Designing Constructive Neural

Network. International Journal on Emerging Technologies, 11(2): 991–996.

